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The purpose of this investigation is to explore some of the effects of the non-linear viscoelastic 
behavior of the adhesive material on the response of a symmetric lap-joint. Although full 
accounting for the non-linear behavior requires the employment of finite-element methods 
the semi-analytical solution presented in this work contains a paramount feature of the non- 
linear character and therefore provides insight into the complex response of the joint. 

I NTRO D U CTlO N 

Analytical and numkrical investigations of adhesive joints have shown 
that the stress field within the adhesive layer is highly non-uniform, with 
sharp peaks near the ends of the bond line. ’-‘ In fact, it is to be expected that a 
linear-elastic analysis should yield infinite values for the shear and normal 
stresses at those ends, due to the corner singularity that exists at the point 
where the adhesive-adherend interface intersects the free edge.5* 

These excessively high stresses do not exist in reality. In several analyses 
these sharp peaks were reduced to the level of the experimentally measured 
ultimate stress by assuming elasto-plastic or visco-plastic behavior of the 
adhesive material.” However, various data indicate that the behavior of the 
adhesive is characterized by a non-linear viscoelastic relation rather than 
by plastic yield and flow.’. lo ,  l 1  

The non-linear viscoelastic behavior, at which strains are no longer 
proportional to stresses, is typified by an accelerated and stress-enhanced 
creep. Basically, at elevated stresses the material moduli seem to soften and 
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280 Y. WEITSMAN 

the creep to progress at accelerated rates. It is this accelerated creep-rate 
which is considered in the present work. 

VARIATIONAL FORMULATION 

Consider the symmetric double-lap joint of length 2c shown in Figure 1. 
Let the thickness of the central adherend and the outer laps be 2h and h 
respectively, and let a be the thickness of the adhesive layer. We consider all 
adherends to be made of the same material. 

The joint is pulled apart by a force P. We designate the center adherend 
by the letter “C”, the outer-adherends by “B” and the adhesive layers by “A.” 

Due to the symmetry of our problem we place the origin of the x-z axes 
at the center of the adherend “C” and at a distance 4 2  from the edge and 
analyse the quarter portion shown in Figure 2. 

Assume that the adherends respond in pure tension and the adhesive in 
pure shear. A system of field equations and boundary conditions which is 
consistent with those assumptions and applicable to any constitutive 
relation is derivable by means of the principle of virtual work. 

In view of the above mentioned assumptions and the symmetry of the 
joint we have the following expression for the variation of the internal 
energy U : 

None of the integrands in (1) depends on z, therefore integration across 
the thickness yields 

c/2 

(1/4)6U = (N,&: + QA6yfz + N&:) d x  (2) 
L c / 2  

where QA is the resultant of the shear stress in the adhesive layer and N,, 
N, are the normal stress resultants. 

In terms of the displacement u, and uB, of the central and outer adherends, 
we have 

&: = u;: 

&B = u;J 
(3) 

and 
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P “C” 
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FIGURE 1 The geometry of the adhesive joint. 

L x  

- JB-P 
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FIGURE 2 The analysed portion of the joint and the prevailing symmetries. 

where primes denote derivatives with respect to x. Therefore (2) reads 

Integration by parts yields 

[N,6Uc+ NBdUB]:zC!:/2 

The variation of the external work U: commensurate with the above form of 
6U,  is given by 

where NE , N $  refer to applied external loads. 
(1/4)6W = [NE6uc+ N ~ 6 u & l C ! ~ , ,  (7) 
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282 Y. WEITSMAN 

Employing the principle of virtual work d U - d W  = we obtain the 
following field equations 

In addition, we also have 
[ ( N c -  NZ)duc + (NB- N , * ) & 4 , ] ~ ~ e ' ~ , ,  = O (9) 

Eq. 9 determines the boundary conditions which are consistent with the 
present variational formulation. Accordingly, we must prescribe either 
N c  or uc,  as well as either N ,  or u B ,  at x = i-c/2. 

A variant to the field equations 8 and the above mentioned boundary 
conditions is obtainable by noting that Eq. 8 yield N;1+ Nk = 0. Integrating 
this last equation we obtain from considerations of global equilibrium 

(10) 
P 
2 NC+NB = -  

The field equation 10 can be used in place of any one of Eq. 8. Further- 
more, when Eq. 10 is employed at the boundaries x = fc/2, it can be used 
to reduce the number of boundary conditions required for a traction problem. 

TH E LI N EAR-ELASTIC SOLUTION 

Let E and G denote the Young's modulus and the shear modulus of the 
adherend and the adhesive, respectively. Then 

CT: = EM, 

CT! = EUB 
and 

u B - u C  z = z,, = G- 
a 

whereby 
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LOAD TRANSFER IN A DOUBLE-LAP 

Straightforward manipulations, which are omitted 
yield the well known solution :3 

P cosh(x/L) 
4L sinh (c/2L) 

z =  -- 

where 

JOINT 283 

for the sake of brevity, 

(13) 

ah E L2 =-- 
2 G  

Note that as L -+ co z tends to the uniform distribution z = - P/2c. 
As L diminishes the distribution reaches sharper and sharper peaks at the 
edges x = +c/2. 

In a similar fashion we can also compute the remaining stresses and 
displacements in the joint. For instance, we obtain 

where 
y = c/2L 

THE NON-LINEAR VISCOELASTIC CASE 

Consider now an adhesive material characterized by a non-linear visco- 
elastic response. Since the adherends are still linearly elastic Eqs. 11, and 
11 remain valid and all the inelasticity resides in 11,. The time dependent 
response of many adhesive materials can be expressed by a "power-law" 
compliance 

where Do is the instantaneous compliance, t is time and D, , n are material 
constants. 

We shall represent the non-linearity of the viscoelastic response by con- 
sideringa stress enhanced creep.'-' ' To do this we shall introduce a "reduced 
time" t into the time-dependent portion of the shear strain in the adhesive 
layer, where the time reduction is accomplished by a stress-dependent 
shift-factor. We thus have 5 = r/a, where a, = exp( - Or), 8 being a material 
constant." 

A complete treatment of the non-linear problem at hand requires the 
employment of superposition integrals which would entail numerical 
iterations that are best handled by means of a finite element formulation. 
To avoid this task we shall use the approximate quasi-elastic method" 
which is known to yield satisfactory results in many realistic applications. 

D(t) = Do+Dlt" (15) 

'1 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
6
:
3
4
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



284 Y. WEITSMAN 

Nevertheless, the validity of the quasi-elastic approximation in the present, 
non-linear, case must wait verification by comparison with finite element 
solutions. 

Consequently, Eq. 1 1  is replaced by the following expression 

-- uB-uC - z [ D ,  +Dl( t /e -er )”]  
a 

Denote a = nd and D t” = q then (16) reads 

-- - R ( 4  U B - k  

a 
with 

R(7) = z (D,  + qea3 

Eqs. 12, and 12,, which remain valid, now yield 

-- N ,  - NC - -- dR(7) - R’(7)7’(x) 
Eah d x  

Eqs. 8 and 19 give 

whereby 

27 
Eah 
- = R ” ( T ) [ T ‘ ( x ) ] ~  + R’(T)T’‘(X) 

In (19, (20), and the sequel, primes denote derivatives with respect to the 

With the aid of field equations ( lo ) ,  (19) and (12),  , (12),  we have 
argument. 

consequently 

uk = ![ P + aR’(z)z’(x) 
2 2hE 1 

aR’(z)z’( x )  1 
Together with the boundary conditions N,(c/2) = N,( - 42) = 0 we get 

P 1 ’  
2ahE R‘(z(c/2)) 

T’(C/2) = - T’( - 4 2 )  = - 
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LOAD TRANSFER IN A DOUBLE-LAP JOINT 28 5 

AN ITERATIVE SOLUTION 

Denoting Eha/2 = p we can rewrite (20) as follows 

In the sequel we shall omit the arguments, with the understanding that 

Successive differentiation of (24) yields 
z = z(x), z' = dr/dx, etc. and R = R(z),  R' = dR/dz,  etc. 

- R"[3(t")' + ~T'T" ' ]  1 

- R"'[ 1 5 ~ ' ( ~ " ) '  + ~ ( T ' ) ~ T " ' ]  

- R"("'z(") + 8 ~ " t " ' ) )  

where, in (25) 
R' = r + qear( 1 + az) 
RU) = qcr(j  - 1 1 p y j  + ctz) j 3 2  

The iterative scheme employs a guess value for r(O), say z(0) = zb'). Due 

We now divide the interval 0 < x < c/2 into N equal sub-intervals* 

Taylor expansions, truncated after five terms (to provide sufficient accuracy 

to the symmetry of the problem we have r'(0) = 0. 

A = c/2N and denote xi = iA(i = 1 ,  2, .  . . N )  and ?(xi )  = r i .  

with a reasonably small N ) ,  yield 

1 4 ( iv )  zi = T ~ - I + A T ~ - ~ +  ... +-A ~ i - ~ .  
4! 

1 
4!  

Now, upon selecting a guess r(0) = zb')-and with ~ ' ( 0 )  = &we can 
compute z"(0) with the aid of (24) and z'"(O), ~ ( ~ " ' ( 0 )  and ~("'(0)  by employing 
(25). Utilizing (26) we can determine z1 and r', and insertion of these last 
values into (24) and (25) yields z; , T;, r?") and zy). This scheme proceeds in a 
forward manner until we obtain zN and r x .  

(26) 
zi = T : - ~ + A T ; - ~ +  . - .  +-A4$J1 

* I t  appears at this time that due to the sharp peak of T(X) near x = c / 2  a non-uniform sub- 
division of the interval may lead to both economy in computations and improved accuracy. 
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286 Y. WEITSMAN 

At this stage we can test if the boundary condition (23) is satisfied, namely 
if 

(27) 
P 1  

2ahE RI, 
T'(N)  = - - 

and adjust the guess (and subsequent guesses) to meet this requirement. 
Unfortunately, this method becomes unstable for sharply peaking values 
~(42) .  We therefore resort to an alternate approach, in which we test for the 
global equilibrium condition, namely 

1 
4 

Jy T ( X )  d x  = -P 

Consequently, if any guess-say rfFresulted in 
1 1  
4 4  

1; @(x) d x  = -F # -P 

we selected the next guess to be 

Obviously, (29) represents a linear proportionality and thus may fail to 
lead to convergence when the non-linearity of our problem asserts itself 
strongly. Such a circumstance arises when the peak near x = 4 2  is extremely 
sharp.* 

In our computations the integration (28) was performed by means of 
Simpson's rule, which was found to provide high accuracy. 

The following values were employed in the numerical calculations : 
E = lo7 psi (Aluminium) 

Do = 0 . 2 ~  (psi)-' 
D, = 0.1 x 

n = 0.2 
All typical of epoxy resins' I 

a = 0.125 x 1 
c = 2 ,  a = 3 x with h = 0.25" and 1". 

In all the computation the external load was P = 5000 Ibs. 
The two values of h were employed in order to assess the influence of the 

joint's stiffness on the stress profile in the adhesive layer. 
For the stiffer joint, h = l", it was sufficient to divide 4 2  into N = 100 

subdivisions. However for the more pliant case of h = 0.25" a value of 
N = 500 was required to achieve satisfactory accuracy (accuracy was 

* This case, though not encountered in the present computations, may require several modi- 
fications, including non-uniform sub-intervals A and a non-linear interpolation to replace (29). 
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LOAD TRANSFER IN A DOUBLE-LAP JOINT 287 

checked by comparing results for N subdivisions with values obtained from 
2 N  subdivisions). 

Thecomputations were performed for times t = 1,10, lo2, . . . lo6 minutes. 
Results are shown in Figures 3 and 4. In those figures the shear stress z 

in the adhesive layer is plotted us. the distance x from the center of each lap 
to the edge (0 < x < c/2 = 1”). Note that as time progresses the peak 
stresses diminish-a phenomenon that is due to the enhances relaxation 
which occurs in the highly stressed region. A comparison between Figures 
3 and 4 shows that the peaks get steeper with decreasing joint stiffness. This 
observation agrees with conclusions based upon the simpler elastic model. 

The elastic solution (13) is not shown in the figures. This solution coalesces 
with the viscoelastic solution at t = 0 and is practically indistinguishable 
from the curves for t = 1. 

I 
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FIGURE 3 
Adherent thickness h = 1 in. 

Shear stress r in the bond-Line us. distance x at different times t ( t  in minutes). 
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FIGURE 4 Shear stress T in the bond-Line us. Distance x at different times t ( t  in minutes). 
Adherend thickness h = 4 in. 

An analysis based upon non-linear viscoelasticity, accounting for a stress 
enhanced creep response, was provided for the shear stresses along the 
bond-lines of a symmetric double-lap joint. The computations show that the 
highly stressed regions are most substantially influenced by viscoelastic 
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LOAD TRANSFER IN A DOUBLE-LAP JOINT 289 

creep, which tends to reduce the stress levels near the edges of the adhesive 
joint. 

The accounting for the effects of additional aspects of non-linear visco- 
elasticity, like modulus softening, is beyond the capability of semi-analytical 
solutions. Such computations necessitate the employment of finite element 
methods. Nevertheless the results presented herein should provide insight 
and a basis for comparison 
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